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The method of two-point Pad~ approximants  is used to interpolate between the 
low-temperature and high-temperature expansions of the second and third 
cluster integrals (b 2 and b3) of a quan tum hard-sphere gas. b 2 is used as a test 
case, since accurate numerical values are available. Using only a limited number  
of terms from the series (about as many  as are available for b3), we are able to 
represent both the direct and exchange parts to better than 1% over the entire 
temperature range. For b 3 there are no accurate values available, but  the 
qualitative similarity of the results to those for b 2 leads us to believe that we 
have a reasonably good representation of both the direct and exchange parts of 

b3. 

KEY WORDS: Third virial coefficient; third cluster integral; quantum hard 
spheres; two-point Pade approximant. 

1. INTRODUCTION 

For a classical gas, the cluster integrals b t (and hence the virial coefficients) 
can be expressed as integrals over functions of the intermolecular potential. 
Thus their evaluation involves the performance of a number of quadra- 
tures. 

In the quantum case, the connection between the b/s and the intermo- 
lecular potential is not nearly so direct. Only for the second integral b 2 is 
there available an exact expression (1) which allows its accurate computa- 
tion over a complete temperature range. The evaluation of the third (and 
higher) cluster integrals has proved particularly intractable, involving many 
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of the complexities of the full quantum mechanical N-body problem. (For a 
recent theoretical treatment, and references to earlier work, see Ref. 2.) 

The above is true even for a gas of hard spheres. For b 2 there is no 
problem, and accurate numerical values have been calculated by Boyd et  

a/., (3) but there is no corresponding set of values available for b 3 or higher 
integrals. However, for b 3 we do have some exact information available in 
the form of the first few terms of the high-temperature (high-T) and 
low-temperature (low-T) expansions (see the Appendix). It seems worth- 
while to try to extract as much information as possible from these series. 

Various techniques are available for the acceleration of the conver- 
gence of series. Recently, Thakkar (4) has tested a number of these on the 
high-T expansion for the second virial coefficient of a Lennard-Jones gas 
(the Wigner-Kirkwood series) for which four terms are available, and 
found that in particular the CREPE algorithm gives a marked improvement 
in convergence. We have found that a number of these techniques work 
quite well for the direct part of b 2 for hard spheres, but fail completely for 
b3.2 

In the present work we use the method of two-point Pad6 approxi- 
mants. ~5-16) This enables us to make simultaneous use of the information 
available in both the low-T and high-T series, and the Pad6 approximant 
interpolates between these limits. Essentially, we are assuming that these 
series are expansions (about zero and infinity, respectively) of the same 
function, and we are attempting to represent this function by the ratio of 
two polynomials. 

We use the second cluster integral as a test case. Taking about as 
many terms as are available for b 3, we find that both the direct and 
exchange parts of b 2 are represented to better than 1% accuracy over the 
entire temperature range. This is quite remarkable in the case of the 
exchange integral, as any extrapolation procedure based entirely on the 
low-T or on the high-T series leads to complete nonsense. 

We then apply the same technique to the third cluster integral. The 
principal results of this paper are the Pad6 approximants for b3: Eq. (10) 
for b3(dir), Eq. (14) for b3(exch-  1), and Eq. (15) for b3(exch-  2). The 
presence of logarithmic terms gives these a somewhat different appearance 
to the corresponding approximants for b2(dir ), [Eq. (8)] and b2(exch ) [Eq. 
(12)], but a comparison of the graphs (Figs. 1-5) shows that there is a close 
qualitative similarity. This leads us to believe that the third duster integral 

2The principal reason for this failure is the limited number of terms available in the 
series--even though there are four terms known in the high- T series for b3(dir ), these all have 
the same sign and fall off more slowly than the corresponding terms in b2(dir ). In the low-T 
series, the presence of logarithmic terms is an additional complication. 
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is not too different in general behavior to the second, and that the 
application of the Pad6 approximant method is also legitimate here. 

2. THE CLUSTER INTEGRALS 

We consider a system of N identical particles each of mass m in a 
container of volume V. The cluster integrals appear in the expansion of the 
pressure p and the number density N~ V in powers of the fugacity z 3: 

oo 
1 / tip = ~ • btz ( la)  

l ~ l  

oo 
N 1 
V ~3 ~ lbtzZ ( lb)  

l = 1  

Here, fl = 1 / k T  and ?~ = (2qrhZ/mkT) 1/2. Elimination of z between (la) 
and (lb) gives the equation of state in virial form: 

p V  _ I + B  C 
S k T  "-V + ~ + "'" (2) 

where 

B = - N~3b2/b~ (3a) 

C = N2?~6(4b2/b 4 - 2b3/b~) (3b) 

It is convenient to separate out the effect of the particle statistics, and write 
each cluster integral as the sum of a direct term, which describes particles 
obeying Boltzmann statistics, and exchange terms, which account for the 
extra contributions from the Bose-Einstein or Fermi-Dirac  statistics. (iS) 
For particles of spin s we get (18'19) 

b I = 2s + 1 (4a) 

b 2 = (2s + 1)2bz(dir) -4- (2s + 1)b2(exch ) (4b) 

b 3 = (2s + 1)3b3(dir) + (2s + 1)2b3(exch - 1) + (2s + 1)b3(exch - 2) (4c) 

The upper (plus) sign is for bosons and the lower (minus) sign is for 
fermions. In (4c), the exchange contribution to b 3 is divided into a single 
transposition term b3(exeh - 1), which comes from processes in which two 
particles interchange, and a cyclic permutation term b3(exch-  2), which 
comes from processes in which all three particles interchange. 

3We adopt Huang's O7) definition of bl, which differs by a factor ~3 from the usual 
convention. Huang's definition has the advantage of making b I dimensionless. 
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3. PADE APPROXIMANTS FOR DIRECT TERMS 

Gibson 

3.1. b~(dir) 

Many terms have been calculated in both the high-T and low-T series 
[see the Appendix, Eqs. (AI) and (A2)], and in fact one can find bz(dir ) to 
good accuracy simply by summing these series. (2~ We could use all the 
available terms to construct the Pad6 approximant, and presumably this 
would give a very accurate representation of bz(dir ). However, our purpose 
here is not to find the best possible representation of b2(dir ), but rather to 
investigate how well the Pad6 method works with only a small number of 
terms, such as are available for b3(dir ). Thus we start from 

= 2 , , A - 3  A -2 + O ( 1 ) ,  A- - , 0  b2(dir) 3 - ~ -  - A-1 (5a) 

b2(dir) = - A -1 - 3~A -3 + O(A-5), A ~ ~ (5b) 

where A ~ )t/a, a being the hard sphere diameter. We could fit a Pad~ 
approximant directly to these series; however, it is more convenient to work 
with the quantity FI(A ) defined by 

FI(A ) = A3b2(dir) + A 2 (6) 

Since Fl(A)~const  as A ~ 0  or ~ ,  it is appropriate to fit an [n/n] 
approximant. Setting 

P0 + PI A + P2 A2 
F, (A) ~ (7) 

1 + qlA + q2 A2 

and requiring this to agree with (5a) as A--~ 0 and with (5b) as A--> oo leads 
to 

b2(dir ) ~ - A - '  + A -3 ( -27r /3 )  + ( -  %r/7~-2-)A + ((42 - 27rr)/98)A 2 

1 + (3 /7~- )A  + ((9~r - 14)/9S~r)A 2 

(8a) 

- A - 1  + A-3 - 2.094395 - 2.856139A - 0.436969A 2 (Sb) 
1 + 0.303046A + 0.046364A 2 

Table I shows values calculated from (8b) compared with the accurate 
numerical values of Boyd eta/. (3) Agreement is good, being excellent in the 
low-T and high-T regions, and no more than 1% in error in the intermedi- 
ate region. 

Figure 1 shows log10 [ -  b2(dir)] plotted against A-  i. It is seen that the 
Pad~ approximant interpolates smoothly between the low-T and high-T 
series, as calculated from (5a) and (5b), respectively. 
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Table I. Comparison of Pade Values and Accurate Numerical Values of b 2 
i N I I H I  

b2(di r )  ln [b2(exch) ]  

A E x a c t  a P a d 6  b E x a c t  a P a d 6  c 

337 

30.0  - 0 .0337  - 0 .0337  - 1 .9394 - 1.9394 

20 .0  - 0 .0512  - 0 .0511 - 2 .0563  - 2 .0563  

10.0 - 0 . 1 0 8 8  - 0 . 1 0 8 6  - 2 . 4 6 1 9  - 2 . 4 6 1 9  

5.0  - 0 . 2 6 1 4  - 0 . 2 5 9  - 3 . 5 1 6 1  - 3 . 5 1 6 9  

3.0  - 0 .5714  - 0 .566  - 5 .4141 - 5 .417  

2 .0  - 1.1766 - 1.167 - 8 .5582  - 8 .575 

1.0 - 5.0101 - 4 .992  - 23 .089  - 23 .223  

0.5  - 27 .003  - 26 .969  - 75.78 

0 .25 - 172.28 - 172.25 - 1612 
i i 

a F r o m  B o y d  et  al .  (3) 

b E q u a t i o n  (8). 

c E q u a t i o n  (12).  

3.2. b3(dir) 

Expansions for b3(dir ) are given in the Appendix.  Define F2(A ) by 

F2(A ) ~- Aab3(dir) - 37r2 A -2 9~-~r2 A -~ - 13.113835 - 2A 2 
-T- 8 (9) 

0 . 4  I I 1 I I ~  

/ I  

PADE" / ' / . /  

-a~ - 0 , 4  / / , /  - 

o 
. / , , f i # "  " HIG'H T 

~Ov ~ 

I I I I ,  I 
01 0.2 0.3 0.4 0.5 0.6 0.7 

F i g .  l .  D i r e c t  s e c o n d  c l u s t e r  i n t e g r a l  f o r  h a r d  s p h e r e s .  T h e  ful l  c u r v e  is t h e  P a d 6  a p p r o x i -  

m a n t  (8). T h e  b r o k e n  c u r v e s  a r e  t h e  h i g h - T  e x p a n s i o n  (5a )  a n d  t h e  l o w - T  e x p a n s i o n  (5b) .  
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The In A term in (9) [see Eq. (A6)] precludes the direct fitting of a Pad6 
approximant, but this problem is easily circumvented by considering 
dF2/dA (cf. Ref. 8). Fitting a [1/1] Pad6 approximant and then integrating 
leads to 

b3(d i r  ) ~--. 3"n "2 A - 6  ~ - ~  A - 5  _ _ _  + + 13.113835A_4 4x/'2-~r3 A-3 

+ 2A -2 + ~j~ (4~r - 3(-J-)A-41n(1 + 0.2857A) (10a) 

----- 7.402203A -6 + 15.702444A -5 + 13.113835A -4 - 5.923844A -3 

+ 2A -2 + 39.307830A-aln(1 + 0.2857A) (10b) 

It is easily checked that this reproduces (A5) as A ~ 0 and (A6) as A ~ m. 
In Fig. 2, logl0[b3(dir)] is plotted against A- i .  Comparison with Fig. 1 

shows that the Pad6 approximant again gives the same type of smooth 
interpolation between the low-T and the high-T series. This qualitative 
similarity gives us some confidence that the b3(dir ) Pad6 values are reason- 
ably accurate. Hopefully, matters are no more than an order-of-magnitude 

r----1 
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/x21 

Fig. 2. Direct third cluster integral for hard spheres. The full curve is the Pad+ approximant 
(10). The broken curves are the high-T expansion (A5) and the low-T expansion (A6). 



Third Virlal Coefficient for Quantum Hard Spheres 339 

worse than in the b2(dir ) case, and thus we could expect a maximum error 
of less than I0%. 

Previously, (21) we applied the Pad6 method to the direct part of the 
third virial coefficient C, with the result (21) 

Cdi r 57"r2a6 [ 1 + 3~" 48~" A3 18 T A + 1.707660A 2 + 

192 (47r - 3(3-)A21n(1 + 0.1287A)] (11) 
5qr 2 

This is not identical to calculating Cdi~ from (3b), using (10). [The reason 
for the difference is that in deriving (I 1) expansions for b2(dir ), as well as 
for b3(dir ), have been used.] However, values calculated from the two 
expressions [using accurate values of b2(dir)] differ by less than 10%, and 
this is consistent with our estimate of the overall accuracy of (10). We do 
believe that the present expression (10) is more accurate than (1 I), as the 
low-T and high-T series show greater agreement in this case. (Compare 
Fig. 2 with the figure of Ref. 21.) 

A standard method of checking the accuracy of a Pad8 approximant is 
to calculate the one of next higher order and see how much the values 
change. In the present case, we would have to use a [2/2] approximant for 
dFz/dA, and this needs an additional two coefficients between series (A5) 
and (A6). In the Appendix we indicate the difficulties involved in finding 
more terms in either series, and for the moment we cannot improve on the 
present calculation. 

4. PADI~ APPROXIMANTS FOR EXCHANGE TERMS 

At very low temperatures, exchange and direct terms are of compara- 
ble (absolute) magnitudes. As the temperature increases, direct terms show 
a gradual variation, but exchange terms decrease very rapidly. This effect 
has been investigated in detail for b 2 and b3, and the results, together with 
references, are given in the Appendix. This suppression of exchange effects 
is of an exponential nature, and rather than dealing directly with the series 
for bl(exch ), it is more appropriate to first take logarithms. Thus we fit the 
Pad8 approximants to the series for In ]bl(exch)[, 

4.1. b2(exch ) 

Again, we use the second cluster integral as a test case for our 
approximation scheme. We use all the terms from the low-T series (A4), 
but only the leading term from the high-T series (A3). Fitting the appropri- 
ate Pad8 approximant [the details are similar to those for b2(dir ) above] 
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leads to 

In [ b2(exch ) ] ~ ln(2-  5/2) _ 25/2A- l 

+ A-2 - 15.503138 - 3.452068A - 0.661522A 2 (12) 
1 + 0.197601A + 0.041345A 2 

Table I shows values calculated from (12) compared with the accurate 
numerical values. Agreement is excellent--even better than for b2(dir). For 
A > 2.0, which is the only region where b2(exch ) is at all significant 
compared to b2(dir ), the error in bz(exch ) is at most 0.2%. 

Figure 3 shows ln[b2(exch)] plotted against A-1. We show two low-T 
expansions: low T(1) is obtained by summing (A4), and then taking the 
logarithm; low T(2) comes from the series for ln[bz(exch)]. There are also 
two high-T curves: high r(1)  uses the leading term only, while high-T(2) 
uses all the terms in (A3). 

c'- 
u 
• 

o4 
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-8 

\ ]  - ', "\PADE , 
",Xr , 

! ' , \  \ 

f i  ' 4 , \  
- LOW T (1)i \~ \ ~\ - 

k 

LOW T(2) ~ \,,\ t 

T(2) \ /  ~l .,G. \ \  

I I I I 
0.1 0-2 0.3 0.5 1.0 

/21 

-12 - 

-16 - 

-20 
0.05 

Fig. 3. Exchange second cluster integral for hard spheres. The full curve is the Pad6 
approximant (12). The broken curves come from high-T and low-T expansions: high-T0) 
uses only the leading term of the high-T expansion; high-T(2) uses the complete expression 
(A3); low-T(1) is obtained by summing (A4) and then taking the logarithm; low-T(2) comes 
from the series for ln[b2(exch)]. 
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It is remarkable that the two-point Pad6 approximant gives such a 
good representation of b2(exch ). A one-point Pad6 approximant fitted at 
A -  1 = 0 gives only marginal improvement over the low- T expansion. Also, 
more sophisticated methods, such as the CREPE algorithm, (4) applied to 
either the b2(exch ) or the ln[b2(exch)] series, are of little use. By simply 
making the additional requirement that the approximant have the correct 
asymptotic form at A-1 = oe, we are able to represent b2(exch ) accurately 
over the complete temperature range. 

4.2, b3 (exch-  1) 

Guided by the case of b2(exch ), we keep only the leading term in the 
high-T expansion (A7). To handle the logarithmic terms in (A9), we define 
F3(A ) by 

A-3F3(A) = l n [ - b 3 ( e x c h  - 1)] + lnA + lnv~-+ 5 ~ - A - '  (13) 

and then fit a [1/1] approximant to dF3/dA. The final result is 

In [ - b3(exch - 1)] ----- - l n A  - lnv~- - 5~/}-A- 1 + ( 121~ 12 25) A-2  

- 16~/2(47r - 3~-)A-31n(1 + 0.133004A) (14a) 

----- - In A - 0.346574 - 7.071068A- 1 + 6.677726A- 2 

- 166.769000A-31n(1 + 0.133004A) (14b) 

l n [ - b 3 ( e x c h -  1)1 plotted against A -1. Again, the Figure 4 shows 
qualitative similarity with the second cluster integral case (cf. Fig. 3) gives 
us confidence in the interpolation scheme. 

4.3. b3(exch - 2) 

The calculation for b3(exch-  2) parallels that for b3(exch-  1). We 
find 

In [ b3(exch - 2) ] ~ In 3 -5/2 _ _ _  35/2~ A-1 q_ (37/2 _ _~_ ) A - 2 3 5  

313/22~t2 105,/'6 ~r 8 ) A-3 +(36 
(f 

- 2499.572A-41n(1 - 0.012778A) 05a) 

--~ - 2.746531 - 11.022704A- 1 _ 13.984628A-2 

- 31.939461A -3 - 2499.572A-41n(l - 0.012778A) 

(15b) 
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Fig. 4. Exchange third duster integral (single transposition) for hard spheres. The full curve 
is the Pad~ approximant (14). The broken curves are the high-T expansion (A7) and the low-T 
expansion (A9). (In relation to the high-T curve, see the Appendix, Footnote 4.) 

Note that, in contrast to all the previous Pad6 approximants calculated 
here, this one does have a singularity on the positive real axis, at A - 1 =  
0.012778. However, this is in a region where the low-T series is certainly 
valid and should be used instead of (15). 

Figure 5 shows the graph of ln[b3(exch - 2)]. It is qualitatively similar 
to Fig. 3 for ln[b2(exch)] and Fig. 4 for ln[b3(exch- 1)]. The convergence 
of the high-T series appears to be slower in this case, but this could be 
largely due to the fact that we have one term less [cf. (A8) with (A7)], and 
also there is some uncertainty in the value of the quantity 7 appearing 
in (A8). 

APPENDIX. EXPANSIONS FOR THE CLUSTER INTEGRALS 

For convenience, we collect together the high-T and low-T expansions 
for the second and third cluster integrals. 
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Fig. 5. Exchange third cluster integral (cyclic permutation) for hard spheres. The full curve is 
the Padb approximant (15). The broken curves are the high-T expansion (A8) and the low-T 
expansion (A10). 

b2(dir): High- T. We have 

b2(dir ) = 2~r A-3 ~r A-2 2 1 2 1 A 2 3 - ~ -  - A - ~ - - - +  A - -  
24~- ~ 960~r,~ 

+ 4 A3 47 A4+ O(AS), A ~ 0  (A1) 
9009~z 2 322,5607r2~/'~ 

The first term is just the classical contribution. The leading quantum 
correction was obtained by Uhlenbeck and Beth. (22) Subsequent contribu- 
tions have come from Mohling, (23) Boyd eta/., (3) Handelsman and 
Keller, (24) Hemmer and Mork, (25) Hill, (26) Nilsen, (2~ Gibson, (27) and D'Ar- 
ruda and Hill. (2s) The last paper contains all the terms of series (A1). 

b2(dir): Low T. We have 

b2(dir ) = _ A  -1 _ 3qrA -3 + - ~ A  -5 1921~r 3 A-7 + 165673~r4 A-9 
45 525 

472231931~P A- l j  + O(A-13), A ~  oe (A2) 
165375 
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The first four terms were obtained by Uhlenbeck and Beth (12) ; the remain- 
ing two by Ebeling eta/. (29) 

b2(exch): High T. We have 

 exp( 
X [ 1 + O(A 4/3) ], A ~ 0  (13) 

where/3~--~ 1.85576. The exponential suppression of exchange terms with 
increasing temperature was first discussed by Larsen eta/. (3~ The leading 
term in (A.3) was obtained by Lieb (31) using path integral methods. Hill (26) 
developed a systematic method for obtaining higher terms, and actually 
calculates many more terms than we have included in (13). 

b2(exch): Low r .  We have 

25~2 A -5 + O(A-7), A---> oo bz(exch) = 2-5/z - A-I  + 37rA-3 3 

(14) 

This is from Boyd eta/., (3) Eq. (31). We have corrected the sign of the last 
term. 

b3(dir): High T. We have 

b3(dir ) = 3~r 2 A-6 ~ + --4- + A-5 13.113835A -4 

+ 5.306A -3 + O(A-2), A ~ 0  (A5) 

The first term is just the classical contribution. The leading correction term 
was obtained by Jancovici (32) and by Hemmer. (33) The last two terms are 
the work of Jancovici (34) and Jancovici and Merkuriev, (35) respectively. 
The latter paper gives a systematic method of constructing the high-T 
series, but the calculation of the A-3 term is already very difficult. 

b3(dir): Low T. We have 

b3(dir ) = 21_ 2 4~-7r3 A-3 + ~-~ (4rr - 3~/3)A-41nA 

+ O(A-4), A---~ oo (A6) 

The first and second terms were derived by Lee and Yang (36) and Pais and 
Uhlenbeck, (37) respectively. The existence of the logarithmic term was 
established by Adhikari and Amado, (38) and the coefficient was calculated 
by Gibson. (39) These calculations used the Lee-Yang binary collision 
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expansion (or, equivalently, the inverse Laplace transform of the Watson 
multiple-scattering expansion), in which three-body functions are expanded 
in a series of two-body functions. Equation (A6) comes from the first few 
terms in this series, but it is difficult to go any further. The logarithmic term 
is a precursor to a full three-body contribution (of order A-4), and in order 
to get this coefficient by the above method it would be necessary to sum an 
infinite series, since every subsequent term contributes to order A -4. (See 
the discussion in Ref. 39.) 

b3(exch): High T. 4 We have 

1 ,n .2A-2 + / ~ l r r 2 / 3 A - 2 / 3  b3(exch- 1 ) = - 9 r  

+ '~5 jSI2"/r-2/3A2/3)][l+O(A)], 

b3(exch- 2 )=  1 ~  ----~3 A-3exp( - ---r A 4~'3 -2 

A-~0 

(A7) 

24/3qr5/39 yIA-2/3) 

x [ 1 + O(A 2/3) ], A ~ 0  (A8) 

where fll ~ 1.85576 and Yz = 8.53 + 0.31. These expressions are due to 
Hill.(~9) The leading terms were also obtained by Bruch. (42) 

b3(exch): Low T., We have 

b3(exch-  1) = + 5a_2 A_3 
2 24 

+ 16(4qr- 3f3-)A-41nA + O(A-4), 

b3(exch- 2 )=  3-5/2 - ~ 2  A - '  + 3A_ 2 35,/2~r24 a-3 

a + m (A9) 

+ -~  (4~r - 3 ( 5 ) a - 4 1 n a  + O(A-4), A +  m (A10) 

The references and comments are the same as for b3(dir): Low T. 

4 It has been pointed out to me t4~ 41) that expression (A7) is in error, at least in the coefficient 
9~r 4. However, the leading term is certainly correct, and since that is all we use in calculating 
the Pad~ approximant (14), this error is of no consequence as far as the present work is 
concerned. The only place in which we use the full expression (A7) is in drawing the high-T 
curve in Fig. 4; presumably the good agreement with the Pad~ curve indicates that the 
correct expression is not too different from (A7). 
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